Distributed Learning of Equilibria with Incomplete, Dynamic, and Uncertain Information in Wireless Communication Networks

نویسندگان

  • Yuhua Xu
  • Jinlong Wang
  • Qihui Wu
چکیده

New decision-making paradigms addressing the requirements of flexibility, adaptability and intelligence are needed for future wireless networks. Moreover, mutual interactions should be captured when all the devices are autonomous and smart. Game theory is a powerful tool to study such interactions. However, since it is a branch of applied mathematic and mainly studied in economic, some featured challenges should be addressed when applied in wireless networks. This chapter bridges game theory and practical wireless applications, by focusing on the incomplete, dynamic and uncertain information constraints. Four kinds of distributed learning algorithms including stochastic learning automata, payoff-based log-linear learning, learning by trial and error, and no-regret learning are discussed. The learning procedures and basic theoretical results are presented, and their applications in wireless networks are reviewed. Contrastive analysis on environment dynamics, solution concepts, synchrony, convergence, and convergent results is discussed, and some future research directions are given. Distributed Learning of Equilibria with Incomplete, Dynamic, and Uncertain Information in Wireless Communication Networks

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Simulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model

Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent   aim of the research is t...

متن کامل

The Role of Packet Tracer in Learning Wireless Networks and Managing IoT Devices

Wireless networks, Internet of Things (IoT), Internet of Everything (IoE), and smart homes have become extremely important terms in our present-day life. Most of the buildings, companies, institutions, and even homes depend onthese technologies for interaction, communication, automation, and everything surrounding humans. To understand the advanced topics in wireless networks and IoT devi...

متن کامل

A Priority-based Routing Algorithm for Underwater Wireless Sensor Networks (UWSNs)

Advances in low-power electronics design and wireless communication have enabled the development of low cost, low power micro-sensor nodes. These sensor nodes are capable of sensing, processing and forwarding which have many applications such as underwater networks. In underwater wireless sensor networks (UWSNs) applications, sensors which are placed in underwater environments and predicted ena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015